
Eur. Phys. J. D 18, 37–49 (2002)
DOI: 10.1140/e10053-002-0004-9 THE EUROPEAN

PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. The use of storage cells has become a standard technique for internal gas targets in conjunction
with high energy storage rings. In case of spin-polarized hydrogen and deuterium gas targets the interaction
of the injected atoms with the walls of the storage cell can lead to depolarization and recombination. Thus
the number of wall collisions of the atoms in the target gas is important for modeling the processes of
spin relaxation and recombination. It is shown in this article that the diffusion process of rarefied gases
in long tubes or storage cells can be described with the help of the one-dimensional diffusion equation.
Mathematical methods are presented that allow one to calculate collision age distributions (CAD) and
their moments analytically. These methods provide a better understanding of the different aspects of
diffusion than Monte Carlo calculations. Additionally it is shown that measurements of the atomic density
or polarization of a gas sample taken from the center of the tube allow one to determine the possible range
of the corresponding density weighted average values along the tube. The calculations are applied to the
storage cell geometry of the HERMES internal polarized hydrogen and deuterium gas target.

PACS. 47.45.Dt Free molecular flows – 51.20.+d Viscosity, diffusion, and thermal conductivity –
29.25.Pj Polarized and other targets

1 Introduction

Several recent experiments [1,2], including the HERMES
experiment [3–5], which are performed at high or medium
energy lepton or hadron storage rings, make use of in-
ternal nuclear polarized gas targets. These targets have
the advantage of high purity and the possibility of fast
spin reversal. The relatively low target thickness allows
experimenters the use of gas targets in storage rings with
reasonable lifetimes of the stored beam. Often storage
cells are used which are open-ended long tubes mounted
so that the beam of the storage ring passes along their
axis [6–8]. Figure 1 shows the HERMES target storage
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cell as an example [9]. A side tube attached to the stor-
age cell center is used for the injection of the beam of
nuclear polarized atoms that are produced by an atomic
beam source (ABS) [10,11]. The injected atoms collide
with the walls of the storage cell and diffuse into the stor-
age ring beam pipe where they are removed by a high
capacity pumping system. Inside the storage cell the gas
density exhibits a triangular profile along the beam path
of the storage ring. The diffusing atoms can intercept the
path of the stored beam several times, thereby increas-
ing the achievable target thickness by about two orders of
magnitude compared to a free jet target. This technique
allows for the production of a usable target thickness of
up to 1014 nucl cm−2 using nuclear spin-polarized atomic
hydrogen or deuterium. This corresponds to gas densities
of about 1012 to 1013 atoms cm−3 and the behavior of the
gas can be described by molecular flow, e.g. atom-atom
collisions in the volume can be neglected.
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Fig. 1. Geometry of the HERMES storage cell used from 1996
until 1999. 1: Beam tube (BT) elliptically shaped 9.8 by 29 mm,
2L = 400 mm long. 2: Injection tube (IT), 10 mm diameter,
100 mm long. 3: Sampling tube (ST), 5 mm diameter, 100 mm
long. 4: Extension tube (ET), 10 mm diameter, 120 mm long.
The angle between injection and sample tubes and the hori-
zontal plane is 30◦. A storage cell with a smaller beam tube
cross-section was installed in December 1999.

It is further assumed that the atoms or molecules are
physically adsorbed by the surface for a short time pe-
riod. During this time the atoms are in thermal equilib-
rium with the surface, sticking there or hopping from site
to site until they evaporate back into the gas phase. As
adsorption and desorption are decoupled, the desorption
can be assumed to be isotropic and therefore is described
by a cos θ-distribution with θ being the desorption angle
relative to the surface normal. If spin-polarized atoms are
used as target gas, wall collisions will induce spin depo-
larization and recombination of these atoms, which will
reduce the polarization of the target.

In this article we discuss the interplay of the above
mentioned effects with the diffusion of atoms inside the
storage cell. Since both recombination and wall depolar-
ization can be treated in an analogous way, only the case
of recombination is discussed in the following. The reader
is referred to reference [12] for a complete treatment of
the case of wall depolarization.

The distribution n(b, z) of atoms with collision age b
along the longitudinal coordinate z inside the storage cell
will be derived and compared with the distributions ob-
tained by a molecular flow simulation [12–16]. Expressions
for the atomic density in the presence of recombination are
calculated. It will be shown that in the case of weak re-
combination (depolarization) it is sufficient to know the
average number of wall collisions b̄(z) of the particles at
position z in order to determine the atomic density (po-
larization).

In case of the HERMES target a sample of the target
gas leaves the center of the storage cell and is analyzed
by a Breit-Rabi polarimeter (BRP) [12,13,17,18], which
measures the polarization of the atoms, and a target gas
analyzer [12,14,15], which measures the ratio of atoms to
molecules. The average properties along the length of the

target cell are computed based on the extracted sample.
As the atoms can either recombine or depolarize as they
diffuse out of the target cell, the calculation of the average
atomic fraction and average polarization over the target
cell requires a detailed understanding of the gas transport
processes inside the target cell.

If wall relaxation and recombination are assumed to be
uniform all over the inner surface of the storage cell, the
properties of the target gas can be calculated analytically
as a function of the measured values [12,14,19]. However,
this scenario does not seem to be realistic since there have
been indications for non-uniform changes of the surface
properties during operation of the HERMES target in the
27.5 GeV HERA electron ring with beam currents of up
to 50 mA [12,15]. Hence it is necessary to investigate all
possible distributions of atomic density and polarization
for any kind of non-uniform surfaces which are compati-
ble with the measured properties of the sample beam. The
problem of the calculation of average properties of a gas
in a storage cell, when only the properties of a gas sam-
ple from the cell center are measured, is called the central
sampling problem. An exact solution of the central sam-
pling problem is in general not possible, because a mea-
surement of the central value does not contain enough
information. Nevertheless, one is able to determine lim-
its for the possible range of the average gas properties, if
the corresponding properties in the storage cell center are
known. These limits are sufficiently narrow under the op-
erating conditions of the HERMES target to allow for the
determination of the target properties with small errors.

2 The diffusion approximation

2.1 Molecular flow and diffusion

Gas diffusion in the low pressure regime is called molecu-
lar flow and has first been investigated by Knudsen [20],
Smoluchowski [21] and Gaede [22].

According to Fick’s First Law the gas flow Φ along the
axis of a long tube is proportional to the gradient of the
density n (or pressure, since p = nkT )

Φ = −DS∂p
∂z
, (1)

where S is the cross-section of the tube andD the diffusion
constant [23]. For tubes of arbitrary cross-section D is
approximately given by

D =
4
3
S

U
v̄, (2)

where U is the circumference of the tube and v̄ is the
mean velocity of the atoms. Using equation (1) it can be
shown that D is related to the conductance C of the tube
by C = DS/L where L is the length of the tube. Later it
has been shown that equation (2) has to be corrected for
tubes of finite length [24–28]. If R is the radius of the tube,
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equation (2) is exact only in the limiting case R/L → 0.
Equation (1) can also be written as

j = −D ∂n

∂z
, (3)

where n is the particle density and j the particle flow
density. The continuity equation can be expressed by

∂n

∂t
+
∂j

∂z
= q, (4)

where the source density q can be used to describe the
(non-diffusive) appearance of atoms, which are injected
ballistically by an ABS into the storage cell center, or
their disappearance by chemical reactions like recombina-
tion (H1 +H1 → H2). If the gradient of the diffusion con-
stant D vanishes, which is true for tubes of constant cross-
section and temperature, equations (3, 4) can be combined
to the diffusion equation

∂n

∂t
= D

∂2n

∂z2
+ q. (5)

Spin-polarized gas is steadily injected into the HERMES
storage cell center through the injection tube by an atomic
beam source (ABS) [9]. This process can be modeled by
a steady delta-like source at z = 0. It follows that the
density is constant in time (∂n/∂t = 0) and equation (5)
becomes

D
d2n

dz2
= − ṅinj

S
δ(z), (6)

where the constant ṅinj represents the number of injected
atoms per unit time. If one uses the approximation of van-
ishing density at the end, a solution of equation (6), that
fulfills the boundary condition n(L) = 0, is a triangular
density profile

n(z) = n0 (1− |z|
L

) for |z| < L

n(z) = 0 for |z| > L, (7)

where 2L is the length of the complete tube, n0 = n(0) =
ṅinj /C is the central density and C is the conductance
seen by the injected atomic beam, which in case of the
HERMES storage cell (see Fig. 1) is given by the sum of
the conductances of both halves of the beam tube CBT,
the injection tube CIT and the reciprocal sum of the con-
ductances of sample- and extension-tube CST and CET:

C = 2CBT + CIT +
CSTCET

CST + CET
· (8)

In the following, if not explicitly included, the side tubes
are neglected.

The mean collision age b̄(L) at the end of a long tube
is given by [19]

b̄(L) =
3
32

(
UL

S

)2

· (9)

The average time τd that the atom has spent inside the
storage cell is [19]

τd =
3
8
L2U

Sv̄
· (10)

The average time of flight τf between two wall collisions is

τf =
τd
b̄

=
4
v̄

S

U
· (11)

Consider a burst of atoms injected at position z = 0 and
time t = 0. The distribution of the atoms at time t > 0 is
described by the solution of equation (5) with q = 0. If the
description of the diffusion process is restricted to a single
tube with a single value of τf or to a combination of tubes
with the same value of τf , the time since the injection of
the burst can be expressed by the collision age b of the
atoms using t = τfb. Steady injection is understood as a
continuous stream of bursts injected into the cell, where
the injection at position z = 0 is treated as a boundary
condition. Hence equation (5) can be written as

∂n

∂b
=
∂n

∂t
τf = Dτf

∂2n

∂z2
= D̃

∂2n

∂z2
, (12)

with a modified diffusion constant D̃ = Dτf =
(16/3)S2/U2. Since recombination and spin relaxation
processes are predominantly caused by wall collisions, it is
necessary to investigate where and how often the atoms hit
the wall. One way to obtain this information is a molec-
ular flow simulation [29]. But it will be shown that the
solution of equation (12) also provides this information in
reasonable approximation.

2.2 Solution of the diffusion equation

Using the method of separation of variables one finds that

n(z, b) =
n0

b̄

∞∑
k=0

exp
(
−π

2

8
(2k + 1)2 b

b̄

)
cos
(

(2k + 1)πz
2L

)
(13)

with b̄ = b̄(L) given by equation (9) is a solution of equa-
tion (12). It fulfills the boundary condition n(±L, b) = 0.
Equation (13) is a Fourier series expansion and converges
rapidly for high collision ages b > b̄/2. For low collision
ages (b < b̄/2) one may instead use [15]

n(z, b) =
n0

L

√
D̃

π b

∞∑
k=−∞

(−)k exp
(
− (z − 2 k L)2

4D̃b

)
·

(14)

According to Sommerfeld both solutions are related by
the transformation relation of ϑ-functions [30]. They de-
scribe the distribution of atoms or molecules as functions
of position z and collision age b with the boundary con-
dition of vanishing density at the end of the tube and for
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Fig. 2. Comparison of calculated (lines) and simulated (dots) density distributions n(b, z) for an elliptical storage cell of
29.8 × 9.8 mm2 diameter and 2L = 400 mm length in arbitrary units. Left: nz(b) for positions z = 40, 80, 120 and 160 mm (top
to bottom). Right: nb(z) for collision ages b = 20, 60, 100, 140, 180, 220 and 260 (top to bottom). The non-vanishing density at
the ends (z = ±L) was taken into account by an artificial increase of the length L in equation (13) by 8 mm. The calculation
made use of the first 100 terms of the sum in equation (13).

a storage cell without side tubes. In reality the density at
|z| = L does not vanish. One may take this into account
by an artificial increase of the length L in equation (13)
by about the radius R of the tube. Figure 2 compares the
result of equation (13) with the result of a molecular flow
simulation [29] for an elliptical tube of 29.8 × 9.8 mm2

diameter of length 2L = 400 mm. While the agreement is
only approximate for low collision ages, it improves with
increasing b. For b > b̄/2 the difference is less than 2%.

2.3 Collision age distribution and recombination

In this section the atomic density in the presence of recom-
bination will be calculated from the collision age distribu-
tion. Furthermore a simple approximation for the case of
weak recombination will be derived.

A collision age distribution (CAD) NCAD(z, b) de-
scribes the probability to find an atom with collision age
b at position z, i.e. in the interval [z . . . z+ dz]. It is given
by the normalized solution n(z, b)

NCAD(z, b) =
n(z, b)

∞∫
0

n(z, b)db
· (15)

The denominator corresponds to a triangular shaped den-
sity distribution, which reaches n0 at z = 0 and vanishes
at z = ±L. The Fourier series expansion of the triangu-
lar shaped density distribution is obtained by integrating
equation (13)

n(z) =

∞∫
0

n(z, b)db = n0

∞∑
k=0

8
π2

cos
(
π(2k+1)z

2L

)
(2k + 1)2

· (16)

By definition (equation (15)) the distribution NCAD(z, b)
is normalized to unity

∞∫
0

NCAD(z, b) db = 1. (17)

Let γr be the recombination probability per wall collision.
It has been shown that in case of the HERMES target the
dominant recombination mechanism is the reaction of a
atom from the gas phase with an atom chemically bond
to the surface. This process is independent of the target
gas density since the coverage of the chemically bond sites
can assumed to be close to unity [12]. If γr is additionally
independent on position the probability ρa for an atom to
survive b wall collisions is

ρa(b) = (1− γr)b ' e−γrb, (18)

where the approximation holds for γr � 1 and b� 1. For
polarized targets γr is typically of the order 10−2 . . . 10−5.
Thus the approximation is justified. The average probabil-
ity ρa(z, γr) that the atoms in [z . . . z+dz] inside the target
cell did not recombine, is given by the survival probabil-
ity ρa(b) for a given collision age b times the probability
of collision age b summed over all possible collision ages

ρa(z, γr) =
∞∑
b=0

NCAD(z, b) ρa(b)

'
∞∫

0

NCAD(z, b) exp (−γrb) db. (19)

Equation (19) corresponds to a Laplace-transformation.
The Taylor series of ρa(z, γr) in γr can be expressed by
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the moments βm(z) = 〈 bm 〉 (z) of NCAD(z, b), defined by

βm(z) =

∞∫
0

bmNCAD(z, b) db. (20)

Hence one obtains

ρa(z, γr) =
∞∑
m=0

∂mρa(z, γr)
∂γmr

∣∣∣∣
γr=0

γmr
m!

(21)

= 1− β1(z)γr +
1
2
β2(z)γ2

r − . . .

If γr is small, ρa(z, γr) can be approximated to the nth or-
der if the first n moments of the CAD are known. If on the
other hand ρa(z, γr) is known, the moments βm(z) can be
derived using equation (19)

βm(z) = (−)m
dρa(z, γr)

dγr

∣∣∣∣
γr=0

· (22)

A straight forward way to approximate ρa(z, γr) to the
nth order is to skip terms of higher order in γr on the
right side of equation (21). This method of approxima-
tion becomes meaningless for high values of γr. In first
order approximation ρa(z, γr) for instance becomes nega-
tive for β1γr > 1. This problem can be avoided using an
approximation ÑCAD(b) of the collision age distribution
(Eq. (13))

NCAD(b, z) ' ÑCAD(b, z) =
1
b̄

exp
(
− b

b̄(z)

)
· (23)

Equation (19) then yields

ρa(γr, z) =
1

1 + b̄(z)γr
, (24)

where b̄(z) corresponds the average collision age at posi-
tion z and is therefore identical to the first moment β1.
A generalization for higher order approximations is then
given by

ρa(γr, z) =
1

1 + β1(z) γr + (β2
1(z)− 1

2β2(z)) γ2
r + . . .

,

(25)

where the coefficients in the denominator are given by
the formulae for the inversion of series [31] applied to
equation (21). In the next section the exact solution
for ρa(γr, z) for a long tube and constant γr will be de-
rived.

2.4 Calculation of atomic density and moments
from collision age distributions

The atomic density for a given number of wall bounces
na(z, b) in the presence of uniform recombination can be
computed by multiplying the density distribution in the

absence of recombination, derived in equation (13), with
the survival probability ρa(b)

na(z, b) = n(z, b) ρa(b)

=
n0

b̄

∞∑
k=0

exp
(
−π

2

8
(2k + 1)2 b

b̄
− γr b

)
× cos

(
(2k + 1)πz

2L

)
· (26)

The total atomic density na(z, γr) is obtained by integra-
tion over all collision ages

na(z, γr) =

∞∫
0

na(z, b)db = n0

∞∑
k=0

8
π2

cos
(
π(2k+1)z

2L

)
(2k + 1)2 + 8

π2 b̄γr

·

(27)

As a consequence of the multiplication with the factor
exp (−γr b) in equation (26), na(z, b) is no longer a solution
of equation (12). In the presence of recombination, the
atomic density na(z, b) is reduced by the number of atoms
recombining with the bth wall collision at position z which
is γrna(z, b). Hence γrna(z, b) has to be subtracted from
the right side of equation (12) and one obtains

∂na(z, b)
∂b

= D̃
∂2na(z, b)

∂z2
− γrna(z, b). (28)

The above given differential equation is solved by equa-
tion (26). Integrating equation (28) over all collision ages
yields the following ordinary differential equation:

na(z,∞)− na(z, 0) = 0 = D̃
d2na(z)

dz2
− γr na(z), (29)

where it was used that na(z, b) vanishes for both zero and
infinite collision age b. The solution of equation (29), which
fulfills the boundary condition n(L) = 0, is

na(z, γr) = na(0)
sinh (

√
x y)

sinh (
√
x)

, (30)

where x and y are defined by x = (L2/D̃)γr and y =
(L − |z|)/L. Equation (30) is identical to equation (27),
which is a Fourier series expansion of the sinh-function.

If the atomic density in the center of the cell is known,
equation (30) describes the atomic density profile inside
the target cell including effects of uniform recombination.
In the case of the HERMES target, the atomic flux into the
storage cell center is constant and hence the atomic den-
sity na(0) decreases with increasing recombination. Equa-
tion (30) can therefore not be applied directly. If one in-
tegrates equation (6) over an infinitesimal interval around
z = 0, one obtains

dna
dz

∣∣∣∣
z→+0

− dna
dz

∣∣∣∣
z→−0

= − ṅinj

CBT L
, (31)

where the side tubes are neglected. Since the integration
was carried out around an arbitrarily small interval, the
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integrated surface area is negligible and the relation holds
in the presence of recombination. Since the tube is sym-
metric both gradients on the left of equation (31) are the
same and thus

ṅinj = −2CBT L
∂na
∂z

∣∣∣∣
z→+0

· (32)

With equation (30)

na(0) =
ṅinj

2CBT

tanh
√
x√

x
· (33)

It is useful to define the effective conductance Ceff for
atoms at the entrance of a tube given by

Ceff =
ṅinj

na(0)− na(L)
=

ṅinj

na(0)
= CBT

√
x

tanh
√
x
· (34)

Ceff accounts for the loss in center density of atoms from
recombination in the cell and Ceff > CBT holds for γr > 0.
The expression for Ceff can be used to simplify the relation
between the central atomic density na(0) and the injected
flux ṅinj, given by equation (33)

na(0) =
ṅinj

2Ceff
· (35)

Equations (33, 35) may now be applied to equation (30)
to yield the atomic density in the storage cell with the
boundary condition of a constant flux of injected atoms

na(z, γr) =
ṅinj

2CBT

sinh (
√
x y(z))√

x cosh (
√
x)
· (36)

Equation (36) still neglects the injection and sample tube
and can therefore not be applied directly to the HERMES
storage cell. The analytical solution for a storage cell in
Figure 1 is given in [12].

The probability that an atom at position z has sur-
vived recombination is equal to the ratio of the atomic
densities with and without recombination

ρa(z, γr) =
n(z, γr)

n(z, γr)|γr=0
· (37)

ρa can be calculated analytically using na(z, γr) given by
equation (36)

ρa(x, y) =
sinh (

√
xy)√

xy cosh (
√
x)
· (38)

The z dependence of equation (38) for various values of γr

is shown as solid lines in Figure 3.
If one expands the hyperbolic functions in numerator

and denominator of equation (38) into Taylor series of
their arguments and uses the formula for division of se-
ries in the variable x [31], ρa(z, γr) can be written in the
following way

ρa(x, y) =
[
1 +

y2 − 3
6

x+
y4 − 10 y2 + 25

120
x2 + . . .

]
,

(39)
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Fig. 3. Upper figure: survival probability ρa(z) in a storage
cell vs. position z. The solid lines are calculated using equa-
tion (38). The first order approximation [Eq. (24)] is shown by
dashed lines and the second order approximation [Eq. (25)] by
the dotted lines (hidden by solid line). For these two cases β1

and β2 were calculated from equation (40). The results shown
by the dash-dotted lines were obtained using equation (19)
with NCAD(z, b) from a molecular flow simulation. All curves
were calculated assuming a uniform recombination probability
γr (top to bottom) of γr = 10−4, 2× 10−4 and 4× 10−4. Lower
figure: relative difference ∆ρa(z, γr) between equation (38)
(solid lines), equation (24) (dashed lines) and equation (25)
(dotted lines, hidden by solid lines) and the result of the Monte
Carlo simulation for the same conditions.

which corresponds to a Taylor series in x. It was shown in
equation (22) that the coefficients of the Taylor series ex-
pansion of ρa are related to the moments of the CAD. By
comparison of equations (39, 22) the following moments
of the CAD are obtained:

β1(z) = b̄ =
ε2

6
(3− y2)

β2(z) =
ε4

60
(25− 10 y2 + y4) =

ε4

60
(5− y2)2

. . . , (40)

where ε = L/
√
D̃ and y = 1−|z|/L. The average collision

age at the end of the tube (y = 0) is in agreement with
equation (9)

b̄(L) =
ε2

2
=

3
32

(
UL

S

)2

· (41)

The density weighted average collision age β̄1 is given by

β̄1 = 2

1∫
0

β1(y) y dy =
5
12
ε2 =

5
4
β1(z = 0)

=
5
6
β1(z = L) = β1(z =

√
2− 1√

2
L). (42)
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Fig. 4. Moments β1 and β2 of the CAD of an elliptically
shaped tube like the HERMES beam tube vs position z. The
solid lines are calculated using equation (40), the dotted curves
are obtained by a molecular flow simulation. The length L was
increased in the calculation by 8 mm in order to take the finite
conductance at the end of the cell into account. The second
moment is shown as

√
β2. For both moments the agreement is

rather good except for the very center.

Figure 4 shows a comparison of the calculations with the
results of a molecular flow simulation. Figure 3 shows a
comparison of the different methods to obtain the aver-
age survival probability ρa(z, γr). The different methods
agree well in the case of weak recombination, which is the
situation of interest in polarized gas targets.

The relative difference ∆ρmc
a (z, γr) of the result ob-

tained by equation (19) with NCAD(b, z) from a Monte
Carlo simulation of molecular flow and the first order an-
alytical solution ρ

(1)
a (z, γr) (Eq. (24) with b̄(z) = β1(z)

using Eq. (40)) for L = 208 mm

∆ρa(z, γr) =

∣∣∣∣∣ρ(1)
a (z, γr)− ρmc

a (z, γr)
ρmc
a (z, γr)

∣∣∣∣∣ , (43)

is shown in the lower plot of Figure 3 for γr ≤ 4 × 10−4

or ρa above 0.88. The curves show, that the atomic den-
sity decreases with increasing recombination, the effect is
smaller in the center and increases with increasing |z|.
The figure clearly illustrates that a measurement of the
atomic density at z = 0 has to be corrected in order to
obtain the average atomic density. The magnitude of the
correction increases with increasing |z| and increasing γr.
It will be shown later, that in case of the HERMES target,
the difference ∆ρa(z) resulting from different methods of
calculation can be neglected compared to the systematic
uncertainty introduced when γr is allowed to vary along
the cell.

The above calculations are accurate for a simple tube
with a source in the center. At the HERMES storage cell
(Fig. 1) two additional tubes are connected in the center,
one for the injection of atoms, and one for sampling of
atoms with the polarimeter and gas analyzer, respectively.
Equations (40) are only accurate if the total conductance
of all side tubes Cside can be neglected compared to the
total conductance of the cell: Cside � Ccell. This is not the
case for the HERMES storage cell. But since the atomic
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Fig. 5. Average collision age b̄(z) in the beam tube of the
HERMES storage cell obtained by a molecular flow simula-
tion including all side tubes (solid line) and by equation (45)
(dashed line). The drop of b̄(z) in the storage cell center is
caused by the injected jet. Besides this jet, the difference be-
tween calculation and simulation is ≤ 4%.

density n(z, γr) can also be calculated in the presence of
side tubes [12,14], one can determine the average collision
age using the derivatives of ρa(γr) = n(z, γr)/n(z, 0). If
additional tubes of constant cross-section are connected
in the center of the storage cell, the atomic density along
the jth tube is given by

n(j)(z, γr) =
ṅinj∑
iC

eff
i

sinh√xj yj
sinh√xj

, (44)

where Ceff
i are the individual conductances (xi and εi, de-

fined correspondingly) and yj = 1−|z|/Lj is a function of
the coordinate along the axis of the jth tube. The average
collision age b̄j(z) in the jth tube is given by

b̄j(z) =
1
3

∑
iCi ε

2
i∑

i Ci
+
ε2
j

6
(1− y2

j ). (45)

It is worth mentioning that the absolute value of b̄ depends
on the side tubes, while the first derivative along z does
not. Figure 5 shows a comparison of equation (45) with
the result of a molecular flow simulation.

2.5 Homogeneous beam tube

If one applies equation (44) to the HERMES storage cell
and assumes uniform recombination inside the beam tube
(γBT

r = const = γr) and negligible recombination inside
the side tubes (γIT

r = γST
r = γET

r ' 0, for the symbols
see Fig. 1), one obtains the following expression for the
central density:

n(j)(0, γr) =
ṅinj∑
iC

eff
i

, (46)

so that using equation (37), ρa(0) is given by:

ρa(0) =
∑
iCi∑
iC

eff
i

(47)

=
CIT + CETST + 2CBT

CIT + CETST + 2CBTεBT√γr/ tanh
(
εBT√γr

) ,
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where CETST is the combined conductance of sample and
extension tube (1/CETST = 1/CET +1/CST). The density
weighted average value ρ̄a is given by

ρ̄a =

L∫
−L

nBT(z, γr) dz

L∫
−L

nBT(z, 0) dz
=

1
LnBT(0, 0)

L∫
−L

nBT(z, γr) dz.

(48)

The calculation yields

ρ̄a = ρa(0)
2 sinh

(
ε
√
γr

)
ε
√
γr [1 + cosh

(
ε
√
γr

)
]
· (49)

This formula may be used in situations where uniform
and density independent recombination can be assumed.
A uniform surface is not a realistic assumption in case of
the HERMES target cell. In the next sections non-uniform
situations will therefore be discussed.

2.6 Differential collision ages

If the recombination probability depends on the position z
along the cell, information is required on how many colli-
sions the atoms of the sampled gas performed within the
interval z . . . z + dz – called the differential collision age.

One assumes a storage cell without recombination in
side tubes γIT

r = γST
r = γET

r = 0 and a beam tube that
is split into an inner region |z| < L0, where γBT

r = 0 and
an outer region |z| > L0, where γBTr > 0 and constant.
The effective conductance Ceff of the beam tube is given
by the reciprocal sum of the effective conductances of the
inner (C<) and outer (C>) region,

Ceff =
C< × C>
C< + C>

· (50)

The conductance of the non-recombining inner part is
C< = CBT(L/L0) and the effective conductance of the
recombining outer part is

C> = CBT
ε
√
γr

tanh
(
ε
√
γr y0

) , (51)

where y0 = (L− L0)/L. The calculation of the combined
conductance yields

Ceff = CBT

ε
√
γr

ε
√
γr (1− y0) + tanh

(
ε
√
γr y0

) · (52)

The central normalized density ρa(z = 0, γr) can be ob-
tained from equation (47)

ρa(z = 0, γr) =
∑
iCi∑
i C

eff
i

· (53)
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Fig. 6. Average differential collision age of gas in the storage
cell center, obtained by a molecular flow simulation (symbols)
and by equation (57) (line).

If the conductances of the injection and the sample tube
are neglected, one finds

ρa(z = 0, γr) = 1− y0 +
tanh (

√
x y0)√
x

· (54)

The first terms of the corresponding Taylor series in γr are

ρa(z = 0, γr) = 1− 1
3
y3

0 ε
2 γr . . . (55)

The second term on the right side of equation (55) equals
the average number of collisions b̄>(L0) (see Eq. (22)) that
atoms from the storage cell center carried out in the re-
combining region (z > L0),

b̄>(L0) =
1
3
y3

0 ε
2. (56)

The average number of collisions db̄(z) between z and z+
dz equals the absolute value of the derivative of b̄>(L0)
with respect to L0

db̄(z) =
(

1− |z|
L

)2

ε2 dz
L
· (57)

A first order approximation of ρa(0) is given by

ρa(z = 0, γr) =

1 +

L∫
0

γr(z) db̄(z)

−1

. (58)

Figure 6 shows a comparison between the second order
dependence in z of equation (57) and the simulated dif-
ferential collision age of the sample gas. The results of the
calculation and simulation agree well.
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3 The central sampling problem

In the previous section it was shown that the diffusion
equation yields a good description of the diffusion process
inside a storage cell target. This section will focus on the
central sampling problem, as formulated in Section 1. In
cases where one can assume a constant recombination (or
depolarization) probability γr all over the inner surface
of a storage cell target and the side tubes, the methods
described can be directly used to calculate the atomic frac-
tion inside the storage cell, if the atomic fraction of the
gas sample is measured [12,14].

Global uniformity of γr is unlikely to occur in a high
energy storage ring environment and the measurements at
the HERMES target indeed indicate that the storage cell
surface is altered by the HERA beam [12,15]. Thus it is
required to develop a description for a situation where γr

is an unknown function of position z along the storage
cell. The problem of the determination of γr inside the
side tubes (sample- and injection tube) will be excluded
at this point. There are measurements for the HERMES
target which allow one to draw quantitative conclusions
about the sample tube properties [12]. In the following it
is assumed that γr is non-zero only within the beam tube
of the storage cell and that the sampled gas represents the
properties of the target gas at the storage cell center.

In the steady state ∂na/∂t = ∂na/∂b = 0 one may de-
scribe the flow of atoms including recombination by equa-
tion (28) [19]

0 =
∂na
∂b

= D̃
∂2na
∂z2

− γrna − kδ(z), (59)

where kδ(z) represents the injected flux and γrna the loss
in atomic density from recombination. γr may be an ar-
bitrary positive semidefinite function of position, pressure
and temperature. The rate of molecules dissociated by the
HERA beam is assumed to be negligible. Hence atoms
once recombined do not re-dissociate so

∂2na
∂z2

≥ 0 for z 6= 0, (60)

and hence ∣∣∣∣∂na∂z
∣∣∣∣ ≤ lim

z→0

∣∣∣∣∂na∂z
∣∣∣∣ · (61)

It follows that for any function na(z, γr) the following in-
equality holds

n̄a(γr) =
1

2L

L∫
−L

na(z, γr) dz ≥ na(0)
z+ − z−

4L
, (62)

where z− and z+ are defined by

∂na
∂z

∣∣∣∣
z→−0

= −na(0)
z−

∂na
∂z

∣∣∣∣
z→+0

= −na(0)
z+

, (63)

nmax
a

nmin
a

−L z L

na

z+− z

Fig. 7. Illustration of equation (62): the integral of
LR

−L
na(z, γr) dz is greater than or equal to the area below the

dashed lines, and less than or equal to the area below the dot-
ted lines. The solid curve represents the real atomic density
na(z, γr) and the triangle of solid straight lines represents the
atomic density without recombination na(z, γr = 0).

as illustrated in Figure 7. The injected flux of the ABS ṅinj

reaches the center of the storage cell ballistically and, in
case of the HERMES storage cell, starts to diffuse into
four different tubes (ṅET = ṅST)

ṅinj = ṅIT + ṅST + ṅBT
+ + ṅBT

− , (64)

where ṅBT
± are the fluxes into the right and left side of

the beam tube, respectively. With equation (1) this can
be written as

ṅinj = ṅIT + ṅST +DBTSBT

(
∂na
∂z

∣∣∣∣
z→−0

− ∂na
∂z

∣∣∣∣
z→+0

)
,

(65)

and therefore with equation (63)

ṅinj = ṅIT + ṅST +DBTSBT na(0)
(

1
z+
− 1
z−

)
· (66)

The central atomic density na(z = 0, γr) can be computed
using equation (66)

na(0, γr) =
ṅinj

CIT + CST +DBTSBT (1/z+ − 1/z−)
, (67)

where ṅIT = na(0)CIT and ṅST = na(0)CST have been
used.

It is readily shown that for a given na(0, γr), n̄a(γr)
is minimum in the symmetric case where z+ = z−. The
minimum possible average atomic density in the storage
cell, consistent with an observed density n(0, γr) in the
center, is

n̄a(γr) ≥
1
2
na(0, γr)

z0

L
, (68)

where z0 = z+ = −z− was used. z0/L can be expressed
using equation (67)

z0

L
=

2CBT

ṅinj/na(0)− CIT − CST
, (69)
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where CBTLBT = DBTSBT was used. The ratio η of the
conductances of the side tubes to the beam tube is de-
fined by

η =
CIT + CST

2CBT
· (70)

Equation (68) then gives

n̄a(γr) ≥
1
2

na(0, γr)
ṅinj/[na(0) 2CBT]− η · (71)

The survival probabilities can be calculated by equa-
tion (37)

ρ̄a =
n̄a(γr)

n̄a(γr = 0)
=
n̄a(γr)
ṅinj

2Ctot, (72)

and

ρa(0, γr) =
na(0, γr)

na(0, γr = 0)
=
na(0, γr)
ṅinj

Ctot, (73)

where Ctot = 2CBT+CIT+CST = 2CBT (1+η). The fac-
tor 2 in equation (72) originates from the averaging of the
triangular density profile. Multiplication of equation (71)
with 2Ctot/ṅinj yields

ρ̄a ≥
ρ2
a(0)

1 + η (1− ρa(0))
· (74)

This inequality provides the following interpretation: if
one is able to determine the relative atomic density in
the storage cell center, the average relative atomic density
all over the storage cell, ρ̄a, can not be less than the value
given by equation (74), independent of the functional form
of γr. It should be stressed, that this lower limit can only
be reached in the extreme case, where γr is a step function

γr = 0 for |z| ≤ z0

γr = 1 for |z| > z0. (75)

The condition for the maximum average atomic density is
defined by the dotted line in Figure 7,

L∫
−L

na(z, γr) dz ≤ na(0, γr)L, (76)

and hence

n̄a(γr) =
1

2L

L∫
−L

na(z, γr) dz ≤ na(0, γr)
2

· (77)

Since na(0, γr = 0) = 2n̄a(γr = 0) holds for a triangular
distribution, the normalization yields

ρ̄a(γr) =
n̄a(γr)

n̄a(γr = 0)
≤ na(0, γr)

2n̄a(γr = 0)
= ρa(0), (78)

so that

ρa(0, γr) ≥ ρ̄a(γr) ≥
ρ2
a(0, γr)

1 + η (1− ρa(0, γr))
· (79)

For HERMES, the properties of the gas diffusing out the
sample tube are not identical to the properties of the gas in
the storage cell center, because in the sample tube recom-
bination or depolarization may occur as well. Accordingly,
the normalized density of atoms in the sampled gas ρs

a(γr)
is always less or equal to ρa(0, γr). Hence the upper limit
of ρ̄a(γr) for a given measured value ρs

a is a weaker limit
than the lower limit and holds only in case of vanishing
recombination in the sample tube.

4 The atomic fraction

We define the atomic fraction α in any region of a hydro-
gen or deuterium gas target as the ratio of the density of
nuclei in atoms to the total density of nuclei (in atoms
and molecules) in that region.

α =
na

na + 2nm
=

pa
pa + 2 pm

, (80)

where na and nm are the densities of atoms and molecules
and pa and pm are the partial pressures of atoms and
molecules, respectively. The continuity equation (4) is
then written in the following way

ṅa +∇ja + 2(ṅm +∇jm) = 0. (81)

In case of continuous flow (ṅa = ṅm = 0) this equation
leads to

d
dz

(Φa + 2Φm) = 0, (82)

so that

Φa + 2Φm = −CaL
dpa
dz
− 2CmL

dpm
dz

= Φtot = const,

(83)

where Φa and Φm are the net (particle) fluxes of atoms
and molecules along the cell, respectively. Φtot, the total
flux along the cell, is proportional to the output flux of the
ABS and is therefore independent of γr and z. If one can
assume that the hot molecules produced in the recombina-
tion process, cool down to the temperature of the storage
cell within a few wall collisions, atoms and molecules are
at the same temperature. Since the molecules are twice
as heavy their thermal velocity and conductance Cm are
given by

Cm =
1√
2
Ca, (84)

so that

d
dz

(pa +
√

2 pm) = const. (85)
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Integration of the left side yields the integrand, the right
side a linear function in z. One may express the result
including the boundary condition of vanishing pressures
at the end of the tube by

pa +
√

2 pm = p0
L− |z|
L

· (86)

The constant p0 is independent of γr. It depends only on
the intensity of the injected atomic beam and the overall
cell properties such as geometry and wall temperature, all
of which are assumed to be constant. In the absence of
recombination p0 is equal to the magnitude of the cell gas
pressure at z = 0. It follows from equation (86) that the
sum pa+

√
2 pm is of triangular shape for any γr, including

the non-uniform case described in the next section. The
total gas pressure pa + pm and the total nucleon density,
proportional to pa+2 pm, both depend on γr. Furthermore,
equation (86) implies a non-linear relationship between α
and pa.

In the following, rather than using pa,
√

2 pm and pa+
2 pm, it is useful to normalize these quantities to pa +√

2 pm by defining the normalized variables ρa and ρm
and the normalized total density ρt by

ρa(z) =
pa

pa +
√

2 pm

ρm(z) =
√

2 pm
pa +

√
2 pm

(87)

ρt(z) =
pa + 2 pm
pa +

√
2 pm

, (88)

where

ρa + ρm = 1. (89)

The variable ρa is of particular interest here because it is
equivalent to the survival probability, defined by equa-
tion (19). The normalized total density ρt may be ex-
pressed in terms of ρa

ρt = ρa +
√

2 ρm =
√

2− (
√

2− 1)ρa, (90)

and depends on the strength of the recombination process.
The atomic fraction α is given by

α(z, γr) =
ρa
ρt

=
ρa√

2− (
√

2− 1)ρa
, (91)

and the total normalized target density ρt is

ρt =
√

2
1 + (

√
2− 1)α

· (92)

The fact that ρt depends on the atomic fraction may
in principle be used for the determination of α, but the
achievable precision in case of the HERMES target is in-
sufficient [15]. The relations between ρa, ρm, ρt and α
are shown in Figure 8. Making use of the fact that ρa is
equivalent to the survival probability, one can determine
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Fig. 8. Normalized densities ρa and ρt in the storage cell plot-
ted vs. the atomic fraction α. The variable ρm = 1− ρa is also
shown.

limits for the (density weighted) average value of α from
a known value ρa(0) by applying equation (79)

α ≤
√

2 ρa(0)
1 + (

√
2− 1) ρa(0)

(93)

α ≥ ρa(0)2

√
2 [1 + η (1− ρa(0))]− (

√
2− 1) ρa(0)2

·

The relative systematic uncertainty is calculated by

∆α

α
=
αmax − αmin

αmax + αmin
, (94)

and shown vs. ρa(0) in the right graph of Figure 9. Even
though the uncertainty becomes large if α deviates signif-
icantly from unity, it is below about 1−α and hence small
for high values of α (α > 0.95), typically measured at the
HERMES target. This statement is especially true if one
takes into account that the limiting cases are only reached
in the unrealistic situation of extremely non-uniform sur-
faces.

5 Conclusion and summary

It has been shown that the wall CAD of rarefied gases
diffusing in long tubes can be calculated analytically from
the diffusion equation with high precision. In cases of low
recombination, the knowledge of the average collision age
has been shown to be sufficient to calculate the amount
of recombination. A measurement on a gas sample taken
from the center of the storage cell can be used to derive
the average atomic fraction within the storage cell, if re-
combination is assumed to be uniform. In the case of an
arbitrary non-uniform surface, the properties of the gas
sample were used to obtain limits for the average atomic
fraction. The relative systematic uncertainty in this case is
roughly equal to the measured fraction of molecules and
hence is small in a target with low recombination, e.g.
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Fig. 9. Left: Limits of the possible values of the atomic fraction α in a storage cell as a function of the measured density of
atoms at the cell center ρa(0). The three thin curves represent the lower limits of α for different injection tube geometries. The
solid thin curve represents a scenario with η = 0, i.e. for the hypothetic case of no side tubes, the dashed curve is calculated for
the former HERMES storage cell (see Fig. 1) and the dotted curve for the actual storage cell which has a reduced beam tube
cross-section [12]. The thick solid curve is the (common) upper limit. Right: Relative systematic uncertainty for the same cases.

at the working point of the HERMES target. A similar
formalism can be applied to spin relaxation in wall colli-
sions [12].
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